Overview

Timeline: 2 Months

Members: Emily Gao, Andy Xu, Sadhvi Narayanan, AJ Matheson-Lieber, Ellie Lian, Felix
Peng

Figma Prototype [here]

Reviewing Synthetically Generated Data: Inconsistent,
Tedious, and Manual

Instructlab is an open source IBM project, training and fine tuning enterprise-level
LLMs with synthetically generated data on their flagship watsonX Al product. By leveraging
InstructLab, WatsonX allows enterprises to create custom models trained on highly specific
datasets and can deliver specialized models that perform on tasks such as data analysis,
customer service, etc.

Problem Space

The current integration does not include a consistent way to review the hundreds of
sets of data that are being fed into the model, relying on the irregular manual review
processes of each individual team. The Graphite Digital team was approached with the
problem, “How might we allow teams of reviewers to efficiently and collaboratively approve
or deny sets of synthetic data?”

Current Solutions and Pain Points

“If I'm unsure about the process or answer, | just hope that someone gets around to
reviewing the question.”
- IBM Developer

The current reviewal process includes retrieving synthetic data and
transferring it into a CSV or JSON file where it will be reviewed — any indication of who's
tackling a specific question-and-answer data set, or if it's already been reviewed, is
arbitrarily determined by each team. The alternative — directly reviewing in the command
line interface — was favored by only technical users, becoming a large barrier for
non-technical reviewers. During our preliminary user research with IBM developers and
reviewers, it quickly became clear that the lack of such a reviewing tool has caused
setbacks in model training time and gaps in quality.

We narrowed down on the following three pain points to inform our tool's design:

https://www.figma.com/proto/6pduz8NQaUrYCgVAhBMwMb/Instructlab-Data-Review-Lofi?page-id=904%3A1879&node-id=904-1888&viewport=88%2C-597%2C0.16&t=CR0IKomn8uPpRE8k-1&scaling=min-zoom&content-scaling=fixed

1. There is no existing standard review process or location, making review and
collaboration especially difficult.

2. Users are oftentimes unsure about their decisions, leaving some questions partially
or completely unreviewed.

3. Despite the process being inherently collaborative and involving multiple reviewers,
users are left to their own to assign or review questions.

Prioritizing Collaboration, Efficiency, and Brevity

As mentioned earlier, a lot of the work reviewers currently have to do is tedious,
error-prone, and inefficient. Therefore, in order to combat and mitigate some of these
challenges, we decided to incorporate certain features into our prototype that were
appropriate for the problem space.

List and Modular Views

The list view is intended to offer a faster and more streamlined approach to the
review process only really emphasizing the basic functionalities such as accept or deny
question and answer pairs. This configuration could allow reviewers to work their way
through the questions faster, have a more holistic view of multiple questions at once, and
would be more appropriate if the reviewers did not feel they needed to use more advanced
features or functionalities.

The modular view offers more functionalities, and therefore more flexibility, for
reviewing a question and answer pair. In the modular view, users can edit the questions to
align them more to the intended result and enable collaboration which will be discussed in
more detail below.

Approving, Denying, and Editing Functionalities

These were the basic functionalities that needed to be present for the synthetic data
review process. A user, at the very least, needs to be able to approve a question if they
believe it is accurate. Conversely, they should also be able to deny a question if they are
dissatisfied with the synthetically generated data (SGD). However, if the user believes the
question is not ready for either a denial or approval they should be able to provide their
edits.

Collaborative Team Tooling

Collaborative team tooling essentially allows users to discuss the SGD with one
another, allowing reviewers to see comments or feedback from other users. Additionally,
we believed it would be beneficial to have the option to tag other users for any SGD in case
a reviewer needs help or would like another perspective. We were also considering having

a hard assign option to hand over the question and answer pair to another review entirely if
seen fit.

Reference Documents

While reviewing the questions, the reviewer should have access to the reference
document the question is coming from, so they can best assess whether the question and
answer pair makes sense.

Designing Data Viewing and Interaction

In order to better understand how a set of data goes through the reviewal process,
we mapped out the journey of how a user might navigate reviewing a set of Q&A's — from
how they choose to view the data among larger sets to the final approval or denial stage.

pE somtmer || e

Togganetveentst

wwwwww

Collaboratively, we focused on generating multiple iterations of data viewing — how
might a user quickly scroll through large sets of data with list view? How might a user focus
on reference documents in a larger modular view?

Given our assumption of highly collaborative reviewing teams, we also spent time
generating iterations of commenting, emphasizing the ability to reference the discussion
during the review process and include tag other commenters in the process if a user was
unsure about the content.

Referunir 1

|
~

g
0
i

Using the current WatsonX interfaces as a reference and with continuous feedback
from two WatsonX UX designers + one InstructLab developer, we designed screens
encompassing the three prioritized features: Collaborative Team Tools (filtering,
commenting), List and Modular Views, and Approving, Denying, Editing.

Users begin in list view, where they can easily see the content of the entire set of
assigned Q&As. This view is mainly for users who spend a short amount of time on each of
the questions, quickly approving or denying each set. This view is also for users who may
want to check on the status of other reviewers, filtering through their team members’

assigned Q&A.

Review Data

View, approve, deny, edit, and comment on generated data.

To Review (9) Reviewed (10)

Reviewer
M Reviewer 1 (self) | Reviewer 4

[Reviewer2 | Reviewer 5 . . -
) rogram mask in MVS Programming provides bits to
What is the purpose of the progs [Reviewer3 ' Reviewer 6 gram exceptions. When MVS gives control to
(PSW) program mask in MVS Pr these bits are usually off, causing many program

I exceptions.

‘What are the two MVS services that enable program
exceptions and allow a user exit routine to receive ESPIE and SPIE services.
control when those exceptions occur?

How does the SPIE macro enable program exceptions The SPIE macro enables program exceptions by specifying an
in MVS Programming? exception for which the interruption has been disabled.

In which addressing mode does the exit routine receive The exit routine receives control in 24-bit addressing mode
control for the SPIE macro when an interrupt occurs? for the SPIE macro when an interrupt occurs.

For the SPIE macro, the exit routine receives control only if

What is the difference in addressing mode between the

Users can also view their previously reviewed questions, easily able to see what's
been approved or denied — and subsequently, the overall accuracy of the Q&As that have
been generated by the model. However, the review process does not end upon the
approval or denial of the question: reviewers can tag their team members in comments for a
quick double-check, which will then appear in the tagged reviewer's "to review" feed.

Review Data

View, approve, deny, edit, and comment on generated data.

ToReview(9) Reviewed(10) G/ (B

Program exceptions in MVS Programming refer to specific
What are program exceptions in MVS Programming and conditions that cause a program interruption. These can
what is their significance? include incorrect parameters, exceptional results, or other
issues that disrupt the normal flo comments

@Reviewer 2 Does this answer
look okay to you?

The program status word (PSW) p

Programming provides bits to con

exceptions. When MVS gives cont

are usually off, disabling the prog

specific bits in the PSW program 1

What is the purpose of the program status word (PSW)
program mask in MVS Programming?

The ESPIE and SPIE services in MVS Programming enable
program exceptions and allow a user exit routine to receive
control when those exceptions occur. By issuing the SPIE or
ESPIE macro, programmers can specify their own exit routine
to be given control ...

How do the ESPIE and SPIE services enable program
exceptions in MVS Programming?

The SPIE macro allows the exit routine to receive control only
if the interrupted program is in primary address space control

What is the difference betuween the SPIE and ESPIE (ASC) mode, while the ESPIE macro allows the exit routine to

macros in MVS Programming? receive control if the interrupted program is in either primary

or access register (AR) ASC mode ...

The program interruption control area (PICA) in MVS
Programming contains the new program mask for the

Lastly, for users who are looking for a more comprehensive review and/or reference
to the ground truth document, they can toggle "modular view". Outside of the approve and
denying functions, they'll also see the option to edit the generated answer, providing a
more accurate input for the model. They'll also see a larger place to write comments if the
question or answer warrants more in depth comments or discussion among team members.

Users will be able to see the chunked reference document and scroll through it live
to more accurately fact check the Q&A. From there, users can continue to previous and
next g&as, and approve and deny as usual.

Review Data
View, approve, deny, edit, and comment on generated data.
To Review (9) Reviewed (10) ?

Previous /9 Next

What s the purpose of the program status word's (PSW) program mask in MVS

Programming? Reference.pdf

The PSW program mask in MVS Programming provides bits to control
certain program exceptions. When MVS gives control to programs, these
bits are usually off, disabling the program exceptions.

[

=i

Testing with Developers [user research/testing]

With our mid-fidelity design completed, we turned to Software Developers at IBM
who worked with the existing SDG process to better align our prototype with their current
workflows. To do so, we conducted a user testing session with two of such developers.

Breaking into small groups, each with one developer and three designers, they
walked through our prototype, sharing their thoughts and observations. Additionally,
gathered further insights by asking questions on how they currently went about the review,
how they used different features on our prototype, and what secondary features/edits they
would like to see for a more intuitive platform.

Review Data

i
L«m Narayanan

i St

Critical takeaways from this user testing session:
e Data review was a very individualized process
e Reviewers leaned heavily on the reference document
e Modular view was preferred to list view and more functional

Improving Navigation, Commenting, and Referencing

Completing user testing challenged our assumptions and gave us valuable insights
into how to make our designs more intuitive and user friendly. After some reflection upon
the feedback we had received, our team came up with a list of key pain points to prioritize
solving and created a plan for our next design iteration. We decided to focus on making
navigation more intuitive, improving commenting, and increasing the accessibility of
the reference document.

Navigation changes

Within our testing, we noticed users had trouble toggling between the modular and
list views. In order to address this issue, we redesigned the modular and list view toggle
button to clearly show when a user was switching between sections and make navigating
between sections more intuitive and clear.

2
Key changes:

e Switch icon is used to clearly indicate transition between sections
e List view icon to indicate current page
e Colorful animated transition to indicate the change to modular view

Commenting

From our testing, we found that the comment feature was not utilized as much as we had
expected. Additionally, the developers that we worked with during testing made it clear that
they prioritized a simple commenting experience and independent decision making, and
that comment functions did not need to be overly complex (ex. Forums, etc.).

SNEN

Comments Comments

@Reviewer 2 Does this answer
look okay to you?

Key changes:
e Added minimally invasive comment display
e Redesigned comment modal to emphasize short interactions

Reference document

Within testing, we found that users referenced their own resource document for
each question, and did not seem aware of the existing placeholder. Additionally users found
it difficult to find the information they needed. We decided to add greater searchability and
access to the reference PDF.

Reference.pdf

Chapter 7. Program interruption services

Some conditions encountered in a program cause a program interruption. These conditions include
incorrec d parameter as well results, and are known
generally as program exceptions. The program status word's (PSW) program mask provide bits to control
certain program exceptions. When MVS gives control to programs, these bits are usually off, disabling
the program exceptions. However, MVS also provides the ESPIE and SPIE services to enable program
exceptions and to allow a user exit routine to receive control when those exceptions occur. This chapter
describes the use of ESPIE and SPIE services.

Specifying user exit routines

By issuing the SPIE® or ESPIE macro, you can specify your own exit routine to be given control for one

o more types of program exceptions. If you issue an ESPIE macro, you can also pass the address of a
parameter lis to the exit routine. When one of the specified program exceptions occurs in a problem state
program in atask, the exit outine Lin the key of the
active task and i the addressing mode in effect when the SPIE or ESPIE was issued. (If a SPIE macro was
issued, this is 24-bit addressing mode.

For other the . gets control.

1f the SPIE or ESPIE for which has , the
system enables the interruption when the macro is issued.

i oceurs, interrupt codes 0 through F. For the
SPIE macro, the exit routine receives control only if the interrupted program is in primary address space
control (ASC) mode. For the ESPIE macro, the exit routine receives control if the interrupted program is

i either primary or access register (AR) ASC mode. For both the SPIE and ESPIE macros, the exit routine
receives control only for interrupts that occur when the primary, home, and secondary address spaces are
the same.

The environment established by an ESPIE macro exists for the entire task, unti the environment is
changed by another SPIE/ESPIE macro, or until the program creating the ESPIE returns. Each succeeding
SPIE or ESPIE macro completely overrides specifications in the previous SPIE or ESPIE macro. You can
intermix SPIE and ESPIE macros in one program. Only one SPIE or ESPIE environment s active at a time,
Ifan exit routine issues an ESPIE macro, the new ESPIE environment does not take effect unti the exit
foutine completes.

The system automatically deletes the SPIE/ESPIE exit routine when the request block (RB) that
established the exit terminates. If a caller attempts to delete a specific SPIE/ESPIE environment
established under a previous RB, the caller is abended with a system completion code of X'46D". A
caller can delete all previous SPIE and ESPIE
established) by specifying a token of zero with the RESET option of the ESPIE macro or an exit address of
zero with the SPIE macro.

A program, executing in either 24-bit or 31-bit addressing mode in the performance of a task, can
issue the ESPIE macro. If your program is executing in 31-bit addressing mode, you cannot issue the
SPIE macro. The SPIE macro is restricted in use to callers executing in 24-bit addressing mode in the
performance of a task. The following topics describe how to use the SPIE and ESPIE macros.

Using the SPIE macro

Key changes:
e Included reference doc for each question in modular view
e Have a PDF search tool
e Have reference document available in list view

IBM Stakeholder Presentation & Next Steps

The stakeholder presentation was a pivotal moment in aligning our design approach with
IBM's strategic objectives for Watsonx Al. Key participants included senior representatives
from UX, product management, and development teams. We showcased the design
process as well as a walkthrough of the final prototype.

Emily Gao

L

— B
£ fMatheson-Lieber, Alexander James Nick Jones
8 N AT

Jacob Engelbrecht %

Stakeholders provided critical feedback, particularly on scaling the solution to meet
real-world demands.
e Suhas (PM) emphasized the potential of extending the design beyond manual
reviews to automated validation mechanisms.
e Nicholas (development) highlighted technical limitations like memory constraints and
suggested considering more metrics or confidence scores alongside each dataset
to assist with reviewing.

"This is a big step forward from what we've been doing in the past — a large
Improvement!”
- Jacob Engelbrecht, Backend IBM SWE

Continued Design Exploration
There are a few secondary features that would push this design into a more advanced
iteration:
e Dashboard for managers of reviewing teams to track reviewing statistics
e Metrics on the number of approved or denied datasets and confidence scores to
evaluate overall synthetic data quality
e Role-based task assigning for teams to redirect questions to other members

	Overview
	Reviewing Synthetically Generated Data: Inconsistent, Tedious, and Manual
	Prioritizing Collaboration, Efficiency, and Brevity
	Designing Data Viewing and Interaction
	Testing with Developers [user research/testing]
	Improving Navigation, Commenting, and Referencing
	IBM Stakeholder Presentation & Next Steps

